Streamlit Demo App
The EncypherAI Streamlit demo provides an interactive web-based interface for exploring and testing EncypherAI's functionality. This demo allows users to experiment with metadata embedding, extraction, and verification in real-time through a user-friendly interface.
Features
The Streamlit demo showcases all key EncypherAI capabilities:
- Interactive Metadata Embedding
- Embed custom metadata into text
- Choose different embedding targets (whitespace, punctuation, etc.)
-
See real-time results
-
Metadata Extraction and Visualization
- Extract embedded metadata from text
- View formatted JSON output
-
Compare original and embedded text
-
HMAC Verification
- Test content integrity verification
- Experiment with secret key management
-
Simulate tampering to see detection in action
-
Streaming Simulation
- Visualize chunk-by-chunk processing
- See how metadata is distributed in streaming scenarios
- Understand the streaming workflow
Running the Demo
To run the Streamlit demo:
# Install required dependencies
pip install encypher streamlit
# Run the demo app
streamlit run https://raw.githubusercontent.com/EncypherAI/encypher/main/examples/streamlit_app.py
Alternatively, you can run it from a local copy:
# Clone the repository
git clone https://github.com/EncypherAI/encypher.git
cd encypher
# Run the demo app
streamlit run examples/streamlit_app.py
Demo Structure
The Streamlit app is organized into several tabs:
Basic Embedding
This tab allows users to: - Enter or generate sample text - Define custom metadata fields - Choose embedding targets - See a side-by-side comparison of original and encoded text - Copy the encoded text to clipboard
Metadata Extraction
This tab enables users to: - Paste text containing embedded metadata - Extract and view the metadata - See a formatted JSON representation - Verify the content integrity
HMAC Verification
This tab demonstrates security features: - Configure secret keys for HMAC verification - Test verification on embedded content - Simulate tampering and see detection - Understand how HMAC protects content integrity
Streaming Demo
This tab simulates streaming scenarios: - See text generated chunk by chunk - Observe how metadata is handled in streaming - Control streaming speed and chunk size - Compare different streaming strategies
Code Structure
The Streamlit app is built with a modular structure:
examples/
└── streamlit_app.py # Main Streamlit application
├── basic_embedding() # Basic embedding tab
├── extraction() # Metadata extraction tab
├── verification() # HMAC verification tab
└── streaming_demo() # Streaming simulation tab
Example Code
Here's a simplified version of the code that powers the basic embedding tab:
def basic_embedding():
st.header("Basic Metadata Embedding")
# Text input
sample_text = st.text_area(
"Enter text to embed metadata into:",
value="This is a sample text that will have metadata embedded within it. "
"The metadata will be invisible to human readers but can be extracted "
"programmatically.",
height=150
)
# Metadata input
with st.expander("Configure Metadata", expanded=True):
col1, col2 = st.columns(2)
with col1:
model = st.text_input("Model Name:", value="gpt-4")
org = st.text_input("Organization:", value="EncypherAI")
with col2:
timestamp = st.text_input(
"Timestamp:",
value=str(int(time.time()))
)
version = st.text_input("Version:", value="1.0.0")
# Additional custom fields
custom_fields = {}
if st.checkbox("Add custom metadata fields"):
for i in range(3):
c1, c2 = st.columns(2)
key = c1.text_input(f"Key {i+1}:", key=f"key_{i}")
value = c2.text_input(f"Value {i+1}:", key=f"value_{i}")
if key and value:
custom_fields[key] = value
# Target selection
target_options = {
"Whitespace": "whitespace",
"Punctuation": "punctuation",
"First Letter of Words": "first_letter",
"Last Letter of Words": "last_letter",
"All Characters": "all_characters"
}
target = st.selectbox(
"Where to embed metadata:",
options=list(target_options.keys()),
index=0
)
# Create metadata dictionary
metadata = {
"model": model,
"organization": org,
"timestamp": int(timestamp) if timestamp.isdigit() else timestamp,
"version": version,
**custom_fields
}
# Secret key for HMAC
use_custom_key = st.checkbox("Use custom secret key")
secret_key = None
if use_custom_key:
secret_key = st.text_input(
"Secret Key (for HMAC verification):",
type="password"
)
# Embed metadata
if st.button("Embed Metadata"):
from encypher.core.metadata_encoder import MetadataEncoder
encoder = MetadataEncoder(secret_key=secret_key)
try:
with st.spinner("Embedding metadata..."):
encoded_text = encoder.encode_metadata(
sample_text,
metadata,
target=target_options[target]
)
# Display results
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Text")
st.text_area("", sample_text, height=200, disabled=True)
with col2:
st.subheader("Encoded Text")
st.text_area("", encoded_text, height=200, disabled=True)
# Metadata display
st.subheader("Embedded Metadata")
st.json(metadata)
# Copy button
st.button(
"Copy Encoded Text to Clipboard",
on_click=lambda: st.write(
f'<script>navigator.clipboard.writeText("{encoded_text}");</script>',
unsafe_allow_html=True
)
)
# Verification status
verification = encoder.verify_text(encoded_text)
if verification:
st.success("✅ Verification successful: Content integrity confirmed")
else:
st.error("❌ Verification failed: Content may have been tampered with")
except Exception as e:
st.error(f"Error embedding metadata: {str(e)}")
Complete Streamlit App
Here's a more complete example of a Streamlit app that demonstrates EncypherAI's capabilities:
import streamlit as st
import time
import json
from encypher.core.metadata_encoder import MetadataEncoder
from encypher.core.unicode_metadata import MetadataTarget
from encypher.streaming.handlers import StreamingHandler
# App title and description
st.set_page_config(
page_title="EncypherAI Demo",
page_icon="🔐",
layout="wide"
)
st.title("EncypherAI Demo")
st.markdown(
"This demo showcases the capabilities of EncypherAI for embedding, "
"extracting, and verifying metadata in text."
)
# Create tabs
tabs = st.tabs([
"Basic Embedding",
"Metadata Extraction",
"HMAC Verification",
"Streaming Demo"
])
# Basic Embedding Tab
with tabs[0]:
st.header("Basic Metadata Embedding")
# Text input
sample_text = st.text_area(
"Enter text to embed metadata into:",
value="This is a sample text that will have metadata embedded within it.",
height=150
)
# Metadata configuration
col1, col2 = st.columns(2)
with col1:
model = st.text_input("Model:", value="gpt-4")
org = st.text_input("Organization:", value="EncypherAI")
with col2:
timestamp = st.text_input("Timestamp:", value=str(int(time.time())))
version = st.text_input("Version:", value="1.0.0")
# Target selection
target = st.selectbox(
"Where to embed metadata:",
options=["whitespace", "punctuation", "first_letter", "last_letter", "all_characters"],
index=0
)
# Create metadata
metadata = {
"model": model,
"organization": org,
"timestamp": int(timestamp) if timestamp.isdigit() else timestamp,
"version": version
}
# Embed button
if st.button("Embed Metadata", key="embed_btn"):
encoder = MetadataEncoder()
try:
encoded_text = encoder.encode_metadata(sample_text, metadata, target=target)
st.subheader("Results")
st.text_area("Encoded Text:", encoded_text, height=150)
st.json(metadata)
# Verification
verified = encoder.verify_text(encoded_text)
if verified:
st.success("✅ Verification successful")
else:
st.error("❌ Verification failed")
except Exception as e:
st.error(f"Error: {str(e)}")
# Metadata Extraction Tab
with tabs[1]:
st.header("Metadata Extraction")
# Text input
encoded_text = st.text_area(
"Paste text with embedded metadata:",
height=150
)
# Extract button
if st.button("Extract Metadata", key="extract_btn") and encoded_text:
encoder = MetadataEncoder()
try:
# Extract metadata
extracted_metadata = encoder.decode_metadata(encoded_text)
# Display results
st.subheader("Extracted Metadata")
st.json(extracted_metadata)
# Verify
verified = encoder.verify_text(encoded_text)
if verified:
st.success("✅ Content integrity verified")
else:
st.warning("⚠️ Content may have been tampered with")
except Exception as e:
st.error(f"Error extracting metadata: {str(e)}")
# HMAC Verification Tab
with tabs[2]:
st.header("HMAC Verification")
# Secret key
secret_key = st.text_input(
"Secret Key (for HMAC verification):",
value="my-secret-key",
type="password"
)
# Text input
text = st.text_area(
"Enter text to embed and verify:",
value="This text will be protected with HMAC verification.",
height=100
)
# Create metadata
metadata = {
"model": "verification-demo",
"timestamp": int(time.time()),
"version": "1.0.0"
}
# Embed and verify
if st.button("Embed and Verify", key="verify_btn"):
encoder = MetadataEncoder(secret_key=secret_key)
try:
# Embed metadata
encoded_text = encoder.encode_metadata(text, metadata)
# Display original text
st.subheader("Original Text with Metadata")
st.text_area("", encoded_text, height=100, disabled=True)
# Simulate tampering
tampered_text = encoded_text + " This text was added after embedding."
st.subheader("Tampered Text")
st.text_area("", tampered_text, height=100, disabled=True)
# Verify both versions
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Verification")
verified = encoder.verify_text(encoded_text)
if verified:
st.success("✅ Verification successful")
else:
st.error("❌ Verification failed")
with col2:
st.subheader("Tampered Verification")
verified = encoder.verify_text(tampered_text)
if verified:
st.success("✅ Verification successful")
else:
st.error("❌ Verification failed")
except Exception as e:
st.error(f"Error: {str(e)}")
# Streaming Demo Tab
with tabs[3]:
st.header("Streaming Demo")
# Streaming parameters
st.subheader("Configure Streaming")
col1, col2 = st.columns(2)
with col1:
chunk_size = st.slider("Chunk Size (words):", 1, 10, 3)
delay = st.slider("Chunk Delay (seconds):", 0.1, 2.0, 0.5)
with col2:
metadata = {
"model": "streaming-demo",
"timestamp": int(time.time()),
"version": "1.0.0"
}
st.json(metadata)
# Start streaming
if st.button("Start Streaming Simulation", key="stream_btn"):
# Sample text split into words
text = "The quick brown fox jumps over the lazy dog. This is an example of streaming text generation with embedded metadata."
words = text.split()
# Create chunks
chunks = []
for i in range(0, len(words), chunk_size):
chunk = " ".join(words[i:i+chunk_size])
if i + chunk_size < len(words):
chunk += " "
chunks.append(chunk)
# Initialize streaming handler
handler = StreamingHandler(metadata=metadata)
# Display streaming progress
st.subheader("Streaming Progress")
progress_bar = st.progress(0)
# Container for streaming output
stream_container = st.empty()
accumulated_text = ""
# Process chunks
for i, chunk in enumerate(chunks):
# Process chunk
processed_chunk = handler.process_chunk(chunk)
accumulated_text += processed_chunk
# Update display
stream_container.text_area("", accumulated_text, height=150, disabled=True)
progress_bar.progress((i + 1) / len(chunks))
# Delay
time.sleep(delay)
# Finalize
final_chunk = handler.finalize()
if final_chunk:
accumulated_text += final_chunk
stream_container.text_area("", accumulated_text, height=150, disabled=True)
# Verify the result
encoder = MetadataEncoder()
try:
extracted_metadata = encoder.decode_metadata(accumulated_text)
verified = encoder.verify_text(accumulated_text)
st.subheader("Streaming Results")
st.json(extracted_metadata)
if verified:
st.success("✅ Streaming metadata verified successfully")
else:
st.error("❌ Streaming metadata verification failed")
except Exception as e:
st.error(f"Error extracting metadata: {str(e)}")
Customizing the Demo
You can customize the Streamlit demo by:
- Adding more tabs for additional functionality
- Integrating with LLM APIs to generate content in real-time
- Creating visualization components to better illustrate how metadata is embedded
- Adding file upload/download capabilities for processing documents
For more information on building Streamlit apps, see the Streamlit documentation.