Skip to content

YouTube Demo Script

The EncypherAI YouTube demo script is a comprehensive, visually engaging demonstration of EncypherAI's core functionality. This interactive demo is designed for creating introductory videos about the project, showcasing all major features with rich visual elements.

Overview

The demo script (youtube_demo.py) provides a step-by-step walkthrough of EncypherAI's capabilities with colorful terminal output, visual comparisons, and detailed explanations.

YouTube Demo Preview

Features Demonstrated

The demo covers all key EncypherAI functionalities:

  1. Basic Metadata Encoding
  2. Visual comparison of original vs encoded text
  3. Explanation of zero-width characters

  4. Metadata Extraction and Verification

  5. Extracting embedded metadata
  6. Viewing and interpreting metadata contents

  7. Tamper Detection with HMAC

  8. How HMAC verification ensures data integrity
  9. Demonstration of tampering detection
  10. Simulation of different attack vectors

  11. Streaming Support

  12. Simulating chunk-by-chunk LLM responses
  13. Handling metadata in streaming scenarios

  14. Real-world Use Cases

  15. Content authentication
  16. AI output provenance tracking
  17. Data attribution

Running the Demo

To run the YouTube demo:

# From your EncypherAI installation directory
python -m encypher.examples.youtube_demo

Demo Structure

The demo is organized into clear sections with dramatic pauses and visual elements to maintain viewer engagement:

# Section structure example
console.rule("3. Tamper Detection with HMAC Verification")
console.print()

# Informational panel
console.print(Panel(
    "**HMAC Security in EncypherAI**\n\n"
    "EncypherAI uses HMAC (Hash-based Message Authentication Code) to ensure:\n\n"
    "1. **Data Integrity** - Detect if content has been modified\n"
    "2. **Authentication** - Verify the content came from a trusted source\n"
    "3. **Tamper Protection** - Prevent unauthorized manipulation\n\n"
    "The HMAC is created using the metadata and a secret key, then embedded alongside the metadata.",
    title="", border_style="blue", padding=(1, 2)
))

Code Example

Here's a simplified example of the code used in the YouTube demo:

from rich.console import Console
from rich.panel import Panel
from rich.table import Table
import time
import json

from encypher.core.metadata_encoder import MetadataEncoder
from encypher.streaming.handlers import StreamingHandler

# Initialize rich console for pretty output
console = Console()

# Create a metadata encoder
encoder = MetadataEncoder(secret_key="demo-secret-key")

# Sample text
text = "This is a sample text that will have metadata embedded within it."

# Create metadata
metadata = {
    "model": "gpt-4",
    "organization": "EncypherAI",
    "timestamp": int(time.time()),
    "version": "1.0.0"
}

# Display the original text
console.print("\n[bold]Original Text:[/bold]")
console.print(Panel(text, border_style="green"))

# Display the metadata
console.print("\n[bold]Metadata to Embed:[/bold]")
console.print(Panel(json.dumps(metadata, indent=2), border_style="blue"))

# Embed metadata
console.print("\n[bold]Embedding metadata...[/bold]")
time.sleep(1)  # Dramatic pause
encoded_text = encoder.encode_metadata(text, metadata)

# Display the encoded text
console.print("\n[bold]Text with Embedded Metadata:[/bold]")
console.print(Panel(encoded_text, border_style="yellow"))

# Extract metadata
console.print("\n[bold]Extracting metadata...[/bold]")
time.sleep(1)  # Dramatic pause
extracted_metadata = encoder.decode_metadata(encoded_text)

# Display extracted metadata
console.print("\n[bold]Extracted Metadata:[/bold]")
console.print(Panel(json.dumps(extracted_metadata, indent=2), border_style="blue"))

# Verify the text
console.print("\n[bold]Verifying content integrity...[/bold]")
time.sleep(1)  # Dramatic pause
verification_result = encoder.verify_text(encoded_text)

if verification_result:
    console.print("\n✅ [bold green]Verification successful![/bold green]")
else:
    console.print("\n❌ [bold red]Verification failed![/bold red]")

# Demonstrate tampering
console.print("\n\n[bold]Demonstrating Tamper Detection:[/bold]")
tampered_text = encoded_text + " This text was added after embedding."

console.print("\n[bold]Tampered Text:[/bold]")
console.print(Panel(tampered_text, border_style="red"))

# Verify the tampered text
console.print("\n[bold]Verifying tampered content...[/bold]")
time.sleep(1)  # Dramatic pause
tampered_verification = encoder.verify_text(tampered_text)

if tampered_verification:
    console.print("\n✅ [bold green]Verification successful![/bold green]")
else:
    console.print("\n❌ [bold red]Tampering detected![/bold red]")

    # Explain what happened
    console.print(Panel(
        "[bold]What happened:[/bold]\n\n"
        "1. The text was modified after the metadata and HMAC were embedded\n"
        "2. The HMAC verification failed because:\n"
        "   - The content no longer matches what was originally signed\n"
        "   - The attacker doesn't have the secret key to create a valid signature\n\n"
        "This security feature ensures that any modification to the text will be detected,\n"
        "even if the attacker tries to preserve the invisible metadata.",
        title="Tamper Detection Explanation", border_style="red", padding=(1, 2)
    ))

# Demonstrate streaming
console.print("\n\n[bold]Demonstrating Streaming Support:[/bold]")

# Create streaming metadata
streaming_metadata = {
    "model": "streaming-demo",
    "organization": "EncypherAI",
    "timestamp": int(time.time()),
    "version": "1.0.0"
}

# Create a streaming handler
handler = StreamingHandler(metadata=streaming_metadata)

# Simulate streaming chunks
chunks = [
    "The quick ",
    "brown fox ",
    "jumps over ",
    "the lazy dog. ",
    "This is an example ",
    "of streaming text ",
    "with embedded metadata."
]

# Process chunks
console.print("\n[bold]Processing streaming chunks:[/bold]")
full_text = ""

for i, chunk in enumerate(chunks):
    console.print(f"\nChunk {i+1}: [italic]\"{chunk}\"[/italic]")
    time.sleep(0.5)

    processed_chunk = handler.process_chunk(chunk)
    full_text += processed_chunk

    console.print(f"Processed {i+1}/{len(chunks)} chunks")

# Finalize the stream
final_chunk = handler.finalize()
if final_chunk:
    full_text += final_chunk

# Display the final text
console.print("\n[bold]Final Text with Embedded Metadata:[/bold]")
console.print(Panel(full_text, border_style="green"))

# Extract metadata from streaming text
extracted_streaming = encoder.decode_metadata(full_text)
console.print("\n[bold]Extracted Streaming Metadata:[/bold]")
console.print(Panel(json.dumps(extracted_streaming, indent=2), border_style="blue"))

# Verify streaming text
streaming_verification = encoder.verify_text(full_text)
if streaming_verification:
    console.print("\n✅ [bold green]Streaming verification successful![/bold green]")
else:
    console.print("\n❌ [bold red]Streaming verification failed![/bold red]")

Tamper Detection Demonstration

The tamper detection section provides a particularly clear example of EncypherAI's security features:

  1. First, it shows normal verification of untampered content
  2. Then it simulates tampering by modifying the text content
  3. It demonstrates how the verification detects the tampering
  4. Finally, it shows another attack vector where someone tries to create fake metadata with a different key

Example Output

🚨 Tampering detected!

     **What happened:**

     1. The text was modified after the metadata and HMAC were embedded
     2. The HMAC verification failed because:
        - The content no longer matches what was originally signed
        - The attacker doesn't have the secret key to create a valid signature

     This security feature ensures that any modification to the text will be detected,
     even if the attacker tries to preserve the invisible metadata.

Customizing the Demo

You can customize the demo for your own presentations:

# Change the secret key used for HMAC verification
SECRET_KEY = "your-custom-secret-key"

# Modify the example metadata
metadata = {
    "model": "your-model-name",
    "organization": "Your Organization",
    "timestamp": int(time.time()),  # Unix timestamp
    "custom_field": "custom value"
}

# Adjust timing between sections
time.sleep(custom_delay)  # Change pause duration

Source Code

You can find the full source code for the YouTube demo in the encypher/examples/youtube_demo.py file in the EncypherAI repository.