Quick Start Guide
This guide will help you get started with EncypherAI for embedding and extracting metadata from AI-generated text.
Basic Usage
1. Import the Package
2. Initialize the Encoder
# Create an encoder with a secret key for HMAC verification
encoder = MetadataEncoder(secret_key="your-secret-key")
3. Embed Metadata in Text
import time
# Define your metadata
metadata = {
"model_id": "gpt-4",
"timestamp": int(time.time()), # Unix/Epoch timestamp
"version": "1.0.0",
"organization": "EncypherAI"
}
# Original AI-generated text
text = "This is AI-generated content that will contain invisible metadata."
# Embed metadata into the text
encoded_text = encoder.encode_metadata(text, metadata)
# The encoded_text looks identical to the original text when displayed,
# but contains invisible zero-width characters that encode the metadata
4. Extract and Verify Metadata
# Later, extract and verify the metadata
is_valid, extracted_metadata, clean_text = encoder.verify_text(encoded_text)
if is_valid:
print("Metadata is valid and has not been tampered with.")
print(f"Extracted metadata: {extracted_metadata}")
print(f"Clean text: {clean_text}")
else:
print("Metadata validation failed - content may have been tampered with.")
Streaming Support
EncypherAI also supports streaming responses from LLM providers:
from encypher.streaming.handlers import StreamingHandler
import time
# Initialize the streaming handler
metadata = {
"model_id": "gpt-4",
"timestamp": int(time.time()) # Unix/Epoch timestamp
}
streaming_handler = StreamingHandler(
metadata=metadata,
target="whitespace",
encode_first_chunk_only=True
)
# Process chunks as they arrive
encoded_chunks = []
for chunk in streaming_response_chunks: # From your LLM provider
encoded_chunk = streaming_handler.process_chunk(chunk)
encoded_chunks.append(encoded_chunk)
# Send to client or process as needed
# The complete encoded text with metadata
complete_encoded_text = "".join(encoded_chunks)
Integrating with OpenAI
Here's a quick example with OpenAI:
from openai import OpenAI
from encypher.core.metadata_encoder import MetadataEncoder
import time
# Set up OpenAI client
client = OpenAI(api_key="your-openai-api-key")
# Create encoder
encoder = MetadataEncoder(secret_key="your-secret-key")
# Get response from OpenAI
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Write a short poem about technology."}]
)
text = response.choices[0].message.content
# Add metadata
metadata = {
"model_id": "gpt-4",
"timestamp": int(time.time()), # Unix/Epoch timestamp
"organization": "Your Organization"
}
encoded_text = encoder.encode_metadata(text, metadata)
# The encoded_text now contains invisible metadata
print(encoded_text) # Looks just like the original text
Next Steps
Explore more advanced features in the User Guide: