Skip to content

Tamper Detection

One of EncypherAI's key security features is its ability to detect when AI-generated content has been tampered with. This is achieved through HMAC (Hash-based Message Authentication Code) verification.

How HMAC Verification Works

When metadata is embedded in text, EncypherAI creates an HMAC signature using:

  1. The metadata content
  2. A secret key known only to the encoder/verifier

This signature is embedded alongside the metadata. When the content is later verified:

  • The same secret key must be used
  • The metadata must not have been altered
  • The text content must not have been modified

If any of these conditions are not met, verification will fail, indicating that tampering has occurred.

Implementation Details

The HMAC generation and verification process uses the following approach:

import hmac
import hashlib
import json

def create_hmac(data_bytes, secret_key):
    """Create an HMAC signature for the provided data."""
    return hmac.new(
        secret_key.encode('utf-8'),
        data_bytes,
        hashlib.sha256
    ).hexdigest()

# When embedding metadata
metadata_bytes = json.dumps(metadata).encode('utf-8')
hmac_signature = create_hmac(metadata_bytes, secret_key)

# When verifying
extracted_signature = # (from embedded data)
recalculated_signature = create_hmac(metadata_bytes, secret_key)
is_valid = hmac.compare_digest(extracted_signature, recalculated_signature)

Preventing Tampering Attacks

EncypherAI protects against several types of attacks:

1. Content Modification

If someone modifies the visible text content while preserving the invisible metadata:

from encypher.core.metadata_encoder import MetadataEncoder
import time

# Original with metadata
encoder = MetadataEncoder(secret_key="your-secure-secret-key")
metadata = {"model_id": "gpt-4", "timestamp": int(time.time())}
encoded_text = encoder.encode_metadata("This is the original AI-generated content.", metadata)

# Modified text (with preserved metadata)
tampered_text = "This has been changed but still has the metadata."

# Verification will fail
is_valid, _, _ = encoder.verify_text(tampered_text)  # is_valid will be False

2. Metadata Forgery

If an attacker tries to create their own metadata with a different key:

from encypher.core.metadata_encoder import MetadataEncoder
import time

# Attacker creates their own metadata
attacker_encoder = MetadataEncoder(secret_key="different-key")
fake_metadata = {"model_id": "fake-model", "timestamp": int(time.time())}
fake_encoded_text = attacker_encoder.encode_metadata("This is fake content.", fake_metadata)

# Verification with the correct key will fail
original_encoder = MetadataEncoder(secret_key="original-key")
is_valid, _, _ = original_encoder.verify_text(fake_encoded_text)  # is_valid will be False

Example Usage

Here's how to implement tamper detection in your application:

from encypher.core.metadata_encoder import MetadataEncoder
import time

# Initialization
encoder = MetadataEncoder(secret_key="your-secure-secret-key")

# Embedding metadata
original_text = "Content authenticity is crucial in the age of AI-generated media."
metadata = {"model_id": "gpt-4", "timestamp": int(time.time())}
encoded_text = encoder.encode_metadata(original_text, metadata)

# Verifying untampered text
is_valid, extracted_metadata, clean_text = encoder.verify_text(encoded_text)
if is_valid:
    print("✅ Verification successful!")
    print(f"Metadata: {extracted_metadata}")
else:
    print("🚨 Tampering detected!")

# Simulating tampering by modifying text
tampered_text = encoded_text.replace("authenticity", "integrity")
is_valid, extracted_metadata, clean_text = encoder.verify_text(tampered_text)
if not is_valid:
    print("🚨 Tampering detected! The content has been modified.")

Best Practices

To ensure effective tamper detection:

  1. Secure your secret key:
  2. Store it in environment variables or a secure vault
  3. Rotate keys periodically
  4. Never expose keys in client-side code

  5. Implement additional verification:

  6. Check timestamps are recent
  7. Verify model IDs match expected values
  8. Validate organization fields

  9. Handle verification failures gracefully:

  10. Log verification failures with relevant context
  11. Consider implementing rate limiting for verification attempts
  12. Provide clear user feedback when tampering is detected

Reference Implementation

For a complete demonstration of tamper detection, see the YouTube Demo Script which provides an interactive example of how tampering is detected in EncypherAI.